

One MIP Hit Shape Fitting

Bruce Baller

Goals

- Determine the minimum number of shapes required to fit hits on tracks with varying angles
- Determine double hit separation
 - Close double hits are identified by poorly fitting single hit shapes

coupling

Simulation & Offline

- Generate 200 10 GeV muons with a random distribution in spherical coordinates
 - $\theta < 80^{\circ}$
 - $-0 < \phi < 2\pi$
- Use ArgoNeut electronics simulation
- FFT de-convolution with sigmoid filter
- Require 1 MC track (no δ rays, interactions)
- Do not fit double hits
- Hit fit weighting factor = 1/(5 * ADC noise²)

ArgoNeuT

Generating Hit Shapes for the Library

- Select an event with a single 1 MIP track with the desired dip angle
 - "dip angle" = angle relative to the wire plane
- Select a block of ADC channels in each view
 - Chan(50) Chan(90) in the U (induction) view
 - Chan(335) Chan(375) in the V (Collection) view
- Use the ADC shape in Chan 50 and 335 as the (temporary) library shapes
 - Ensure pulse heights consistent with ~1 MIP
- Fit channels 51 90 and 336 375 using these shapes
 - Use channel for averaging the pulse shape if
 - Good χ^2 , MIP's < 2, hit position OK
- Determine U & V track slopes & correct the averaged shape amplitude for the wire cell path length
- Transfer averaged pulse shape into the shape library
 - Create a shape flag (1,2,3...) = dip angle (degrees) / 10
 - Except dip angle = 0 has shape flag = 1

,,,,,,,,,,,,,,,,,,,,,,

ArgoNeuT

Induction Plane Shapes

Collection Plane Shapes

ArgoNeuT

Induction Plane

Nice correlation between dip angle and the shape flag

ArgoNeuT

Collection Plane

Induction Plane Shape Flag vs Track Angle

True track angle Reco fit failed or $\chi^2/\text{dof} > 20$

Reco Shape Flag ~ Track Angle/10

	1	2	3	4	5	6	10
10	95%	4%					1%
20	57%	39%		2%			1%
30	15%	66%		13%	4%		2%
40		53%		29%	3%		15%
50	1%	22%		61%	6%	3%	7%
60		10%		32%	26%	5%	27%
70					20%	7%	72%
80					5%	17%	78%

Most large angle "failures" (Flag=10) will be inaccurately recovered by fitting double (small angle) hit shapes – *lose information on the ionization*.

Should increase the number of large angle hit shapes

ArgoNeuT

Collection Plane Shape Flag vs Track Angle

True track angle

Reco Shape Flag ~ Track Angle/10

	1	2	3	4	5	6	10
10	76%	14%					10%
20	40%	43%		2%			15%
30	10%	46%		27%			17%
40	6%	18%		52%		1%	
50	3%	5%		14%		8%	70%
60		6%		11%	2%	11%	
70						21%	79%
80							100%

ArgoNeuT

80° Dip Angle Track Induction Plane Hits

Double Hit Study

- Generate 100 events with
 - A 10 GeV muon with origin at (0,0,10) and $\theta_1 < 0.2$
 - A 2nd 10 GeV muon with origin at (0,0,10) and $\theta_{2x} = \theta_{1x} + 0.02$

Multi-Hit Reconstruction Induction Plane

- Count the number of + and ADC bumps (N⁺, N⁻)
 - ightharpoonup If N⁺ >1 or N⁻ > 1, fit multiple hits
 - $> If N^+ = N^- = 1$

← Single hit or close double hit

- Fit 1 hit
- If $\chi^2/\text{dof} > 2$, fit 2 hits
 - Declare double hit if
 - » $\chi^2(2 \text{ hit}) < \chi^2(1 \text{ hit})$, and
 - $MIPS_1 > 0.5 \text{ and } MIPS_2 > 0.5$
 - Use 1 hit fit if 2 hit fit fails

Reconstructed Hits

Double hit separation = 0.020 * δUV

Un-corrected MIP's for all hits upstream of the first double hit plane

Un-corrected MIP's for all hits downstream of the first double hit plane

Summary & Plans

- A ~small set of parameters should allow distinguishing tracks at various angles during hit reconstruction
 - Deconvolution filter, hit fit weight, ~10? library shapes
- Excellent 2 hit resolution in drift direction for small track dip angles
 - 2 hit resolution is ~2x the single hit resolution
- Next
 - Finish defining library shapes
 - Parameterize hit resolution vs dip angle
 - Develop π° identification